13.02.2020     Комментарии к записи Автомобильные шины устройство и маркировка отключены
 

Автомобильные шины устройство и маркировка


Классификация

Для легковых и грузовых авто малой грузоподъемности, микроавтобусов и прицепов для всех климатических зон от -45 С° до 55 С°, а также летние шины, зимние шины, всесезонные шины и т.д..

Для грузовых автомобилей, прицепов и полуприцепов, автобусов и троллейбусов для всех климатических зон при температурах до -45 С°.

  •  Крупногабаритные- с шириной профиля от 350 мм (14 дюймов) и больше, независимо от посадочного диаметра;
  • Среднегабаритные с шириной профиля от 200 мм до 350 мм (от 7 до14 дюймов) и посадочным диаметром не менее 457 мм (18 дюймов);
  • Малогабаритные- с шириной профиля не более 260 мм (до 10 дюймов) и посадочным диаметром не более 457 (18 дюймов).

По форме профиля

  • Обычного профиля с отношением высоты профиля (H) к его ширине (B) более 0,89:
  • широкопрофильные -H/B = 0,6 — 0,9;
  • низкопрофильные — H/B = 0,7 — 0,88;
  • сверхнизкопрофильные — H/B = {amp}lt; 0,7;
  • арочные — H/B = 0,39 — 0,5;
  • пневмокатки — H/B = 0,25 — 0,39;

https://www.youtube.com/watch?v=JI7ykRSVGw8

На авторынке есть в наличии шины от самых разных производителей- мишлен, нокиан, йокогама и т.п., и каждый производитель маркирует шины по разному. Однако есть основные правила маркировки, которые используются почти всеми производителями.

  • P —  означает легковая шина, данная P-метрика входит в систему американской классификации шин и на европейских шинах не применяется.
  • 215 — ширина профиля шины, мм;
  • 65 — высота профиля, указывается как процентное отношение к ширине. В нашем случае высота составляет 65 % от ширины т.е., 140 мм. Часто высоту профиля шины называют серией. В некоторых типоразмерах номер серии отсутствует, например, 215 R15 C 102 Q. Такие шины называют полнопрофильными, а отношение высоты к ширине в таком случае составляет 80 % или 82 %.
  • R — конструкция: радиальная (R), диагональная (D), с опоясывающим кордом (B).
  • 15 — так называемый радиус шины — это диаметр колесного диска на который шину такого размера нужно устанавливать.
  • 89 – коэффициент нагрузки или индекс LI, указывающий на допустимую нагрузку на шину в кг.

Расшифровка популярных коэффициентов по индексам нагрузки:

  • H — индекс максимально допустимой скорости, при которой производитель гарантирует сохранение заложенных эксплуатационных характеристик шины.

В некоторых типоразмерах шин имеются дополнительные буквенные обозначения: 215 R15 C 102 Q, индексом С обозначаются так называемые «усиленные» шины с большим коэффициентом нагрузки.

Кроме вышеперечисленных обозначений, существуют и другие:TUBE TYPE — камерная конструкция.TUBELESS — бескамерная конструкция.TREADWEAR 380 — коэффициент износоустойчивости, определяется по отношению к «базовой шине», для которой он равен 100TRACTION А — коэффициент сцепления, имеет значения А, В, С.

Шины с коэффициентом А имеют наибольшую величину сцепления в своем классе.TEMPERATURE A — температурный режим, показатель, характеризующий способность шины противостоять температурным воздействиям. Он, как и предыдущий, подразделяется на три категории А, В и С.Е17 — соответствие Европейским стандартам.

M S (Mud Snow) — грязь и снег.R W (Road Winter) — дорожная и зимняя.Winter — зима.Rain — дождь.Water или Aqua — вода.AW (Any weather) — всепогодная.All Season North America (все сезоны Северной Америки) и т.п. — шины, предназначенные для эксплуатации в конкретных условиях.

Автомобильные шины устройство и маркировка

Некоторые производители вместо буквенных обозначений используют значки (солнышко, снежинка, тучка и т.д.).PLIES: TREAD — состав слоя протектора,SIDEWALL — состав слоя боковины.MAX LOAD — максимальная нагрузка, кг / английские фунты.MAX PRESSURE — максимальное внутреннее давление в шине, КПа.ROTATION {amp}gt; — направление вращения.

* Для шин с асимметричным рисунком протектора.

LEFT — шина устанавливается на левую сторону автомобиля. *RIGHT — шина устанавливается на правую сторону автомобиля. *OUTSIDE или Side Facing Out — внешняя сторона установки. *INSIDE или Side Facing Inwards — внутренняя сторона установки. *

По назначению:

  • шины для легковых автомобилей, прицепов к ним, легких грузовых автомобилей и автобусов особо малой вместимости;
  • шины для грузовых автомобилей, прицепов к ним, автобусов и троллейбусов;
  • шины для тракторов и прицепов к ним;
  • специальные шины.

Ассортимент, технические условия, основные параметры и размеры шин для автомобилей регламентируются государственными стандартами:

  • шины для легковых автомобилей, прицепов к ним, легких грузовых автомобилей и автобусов особо малой вместимости – ГОСТ 4754, 20993;
  • шины для грузовых автомобилей, прицепов к ним, автобусов и троллейбусов – ГОСТ 5513, 12715, 8430;
  • шины с регулируемым давлением – ГОСТ 13298, 24985;
  • шины с регулируемым давлением для военной техники – ГОСТ РВ 52395.

По типу рисунка протектора (рисунок 1).

Тип рисунка протектора шин колесных машин в значительной степени зависит от их назначения и условий эксплуатации, а также климатических условий (времени года) и других факторов. В настоящее время не всегда возможно однозначно определить тип рисунка протектора определенной шины, так как в нем могут сочетаться несколько типов рисунков, например, зимняя шина с универсальным ненаправленным рисунком.

Рисунок 1. Типы рисунков протектора: а – дорожный; б – универсальный направленный; в – универсальный ненаправленный; г – зимний с шипами; д – карьерный; е – повышенной проходимости

Тем не менее, представляется целесообразным назвать основные типы рисунков протекторов шин:

  • дорожный (летние шины) – для дорог I – III категорий по СНиП 2.05.02-85. Шины для эксплуатации в зимний период и на размокших грунтовых дорогах практически непригодны;
  • универсальный (универсальные шины) – для дорог с твердым покрытием в летний и зимний периоды эксплуатации и сухих грунтовых дорог;
  • всесезонный (всесезонные шины) – для дорог с твердым покрытием в летний и зимний периоды эксплуатации. Характеристики этих шин и шин с универсальным рисунком протектора практически идентичны;
  • зимний (зимние шины) – для заснеженных и обледенелых дорог. Протектор шин с зимним рисунком изготавливают из специальной резины, меньше твердеющей при отрицательных значениях температуры окружающего воздуха, что обеспечивает улучшенное сцепление с дорогой. При этом, однако, снижается износостойкость и срок службы шин и повышается уровень шума;
  • карьерный – для эксплуатации в карьерах на каменистых, щебеночных и гравийных опорных поверхностях. Рисунок протектора очень сильно расчлененный для того, чтобы отдельные камни не застревали в канавках протектора;
  • повышенной проходимости – для бездорожья и деформируемых грунтов;
  • ненаправленный – допускает любое направление вращения колеса. В настоящее время шины с этим рисунком выпускаются все реже;
  • направленный (рисунок 2, а) – для размокших и заснеженных грунтовых дорог. Продольные и поперечные канавки расположены, как правило, симметрично относительно продольной плоскости шины, проходящей через середину протектора, и обеспечивают эффективный отвод воды и снежной взвеси из пятна контакта, хорошую самоочищаемость протектора и минимальный риск аквапланирования. Широкая центральная канавка способствует хорошей управляемости и курсовой устойчивости, а большое количество ламелей – улучшенному сцеплению шины с дорогой и снижению тормозного пути. Шины с таким рисунком менее шумные благодаря плечевым блокам специальной формы и различного размера. Однако их недостатком является то, что они требуют определенного направления вращения колеса (т.е. должны быть разные шины для левых и правых колес автомобиля);
  • асимметричный (рисунок 2, б) – характерен несимметричным расположением дорожек протектора и продольных и поперечных дренажных канавок относительно продольной плоскости шины, проходящей через середину протектора. Это позволяет сочетать в одной шине разные свойства, например, наружную сторону выполняют с рисунком, обеспечивающим наилучшие сцепные свойства при криволинейном движении (в поворотах), а внутреннюю – при торможении.

Автомобильные шины устройство и маркировка

Рисунок 2. Направленный (а) и асимметричный (б) рисунки протектора

Зимние шины с шипами противоскольжения применяются только на легковых автомобилях. Они обеспечивают существенное улучшение эксплуатационных свойств только на обледенелых и заснеженных укатанных дорогах:

  • уменьшение тормозного пути в 2,0…2,5 раза;
  • улучшение динамики разгона на 40 %;
  • увеличение скорости прохождения поворотов, причем возникающий занос остается контролируемым.

Во всех остальных условиях эксплуатации легковых автомобилей наличие шипов снижает коэффициент сцепления шины с дорогой как в продольном, так и в поперечном направлениях. Кроме того, шипованные шины разрушают твердое дорожное покрытие. Для снижения этого отрицательного явления созданы шины с «плавающими» шипами, втягивающимися при соприкосновении с твердым дорожным покрытием.

Шипы производят металлическими или пластмассовыми. Они должны быть износостойкими, легкими, надежно держаться в шине и как можно меньше повреждать дорожное покрытие. Наиболее распространены одно – или двухфланцевые металлические шипы с прямоугольными вставками из твердого сплава. Их размеры должны соответствовать посадочным отверстиям в шине. Выступать над поверхностью шашки они должны в пределах от 1,0 до 1,5 мм.

  1. По расположению нитей слоев корда в каркасе – с диагональным или радиальным их расположением (диагональные и радиальные шины, соответственно).
  2. По способу герметизации внутреннего объема – камерные и бескамерные.
  3. По форме профиля (отношению высоты к ширине шины, Н/В) (рисунок 3) – обычного профиля (тороидные, Н/В = 0,87…1,0), широкопрофильные (Н/В = 0,50…0,85), арочные (Н/В = 0,40…0,50) и пневмокатки (Н/В = 0,25…0,40).

1. Требования, предъявляемые к шинам

Требования, предъявляемые к шинам с избыточным внутренним давлением воздуха.

  1. Общие требования:
    • безопасность (в отношении самой шины и в отношении движения автомобиля);
    • легкость и прочность конструкции;
    • экономичность: низкая стоимость; малое сопротивление качению (низкие гистерезисные потери); высокая износостойкость; достаточная глубина рисунка протектора; длительный срок службы (ресурс); возможность восстановления протектора шины;
    • технологичность изготовления;
    • экологичность эксплуатации.
  2. Специальные требования:
    • хорошее сцепление с твердой опорной поверхностью, позволяющее снизить буксование и юз колес при передаче тяговых, тормозных и боковых сил (обеспечение устойчивости движения колесной машины);
    • надежная посадка бортов шины на полки обода и обеспечение нераскрытия стыков между бортами шины и закраинами обода;
    • низкая температура разогрева, определяемая конструкцией каркаса и типом материала каркаса и брекера;
    • возможность продолжительного движения с максимальной скоростью, соответствующей индексу скорости (скоростная прочность);
    • восприятие усилий, возникающих при криволинейном движении колесной машины (обеспечение хороших показателей управляемости);
    • малое сопротивление повороту колеса;
    • стойкость к механическим повреждениям;
    • сопротивляемость повреждению боковин радиальных шин;
    • легкость монтажа и демонтажа;
    • возможность длительной работы с цепями противоскольжения.
  3. Дополнительные требования к шинам для легковых автомобилей:
    • малая склонность к аквапланированию;
    • пригодность к эксплуатации в зимний период;
    • хорошие амортизирующие свойства, способствующие повышению плавности хода автомобиля;
    • низкий уровень шума, особенно при высоких скоростях движения;
    • отсутствие «визга» при разгонах, торможениях и поворотах автомобиля.
  4. Дополнительные требования к шинам с рисунком протектора повышенной проходимости:
    • высокие тягово-сцепные свойства;
    • низкое удельное давление на опорную поверхность, что обусловливает высокую проходимость колесной машины;
    • хорошая самоочищаемость протектора при движении по размокшим связным и липким грунтам (глина, суглинок, чернозем).
  5. Дополнительные требования к шинам для Военной автомобильной техники:
    • должны быть обеспечены: работоспособность шин в неповрежденном состоянии при изменении внутреннего давления воздуха от номинального до минимально допустимого; заданный уровень проходимости автомобиля по всем видам дорог и местности; высокая скорость (до 100 км/ч) на дорогах с твердым покрытием;
    • приведенная удельная нагруженность шин регулируемого давления по объему, являющаяся качественным показателем уровня опорной проходимости колесной машины, не должна превышать 8,0 и 7,0 т/м3 для радиальных и диагональных шин, соответственно;
    • шины должны оставаться работоспособными в движении при их механических (проколах) и других видах сквозных повреждений при обеспечении соответствующего соотношения между величиной внутреннего давления воздуха в них и скоростью движения автомобиля;
    • шины должны обеспечивать сохранение подвижности автомобиля (пробег не менее 50 км со скоростью не менее 50 км/ч) при движении без избыточного внутреннего давления воздуха;
    • шины должны изготавливаться из резиновых смесей, приспособленных к работе в диапазоне температур окружающего воздуха от минус 500С до плюс 500С;
    • шины должны обеспечивать скрытность автомобиля от тепловой или ИК- заметности, которая определяется контрастом (по разнице температур) внешних элементов автомобиля и окружающей среды.

Особенности бескамерной шины

летние шины — наиболее распространенные. Их отличают четко выраженные продольные канавки для отвода воды из пятна контакта протектора с дорогой, слабо выраженные поперечные канавки и отсутствие микрорисунка. Кроме того, они имеют обязательный плавный (скругленный) переход от протектора к боковинам. Шины этого типа обеспечивают максимальное сцепление с сухой и мокрой дорогой, обладают максимальной износостойкостью и наилучшим образом приспособлены для скоростной езды. Для движения по грунтовым дорогам (особенно мокрым) и зимой они малопригодны.

шины хорошо приспособлены для работы на сухом и мокром асфальте, отличаются удовлетворительной приспособленностью к зимним дорогам большим износом, чем летние. Рисунок протектора всесезонной шины более разветвленный, причем элементы рисунка группируются в хорошо различимую «дорожку» и разделены канавками разной ширины;

(по отечественной терминологии) шины предназначены для работы на дорогах любого качества. Причем четкую границу между ними и всесезонными провести бывает довольно трудно. Отличаются они прежде всего более глубоким и разветвленным рисунком протектора. Дело в том, что, под дорогами «любого качества» в СНГ можно понимать 60-80 % всех дорог, включая и бездорожье, поэтому этот тип шин во многом — отечественное изобретение.

По западным меркам к универсальным можно отнести шины типа М S (Mud and Snow — грязь и снег) в варианте с менее расчлененным канавками рисунком протектора, со слабо выраженным микрорисунком или без него. повышенной проходимости (ПП), преимущественно для работы по мягкому грунту.

предназначен для работы на заснеженных и обледенелых дорогах, сцепные качества покрытия которых могут изменяться, в зависимости от ситуации, от минимальных (гладкий лед или каша из снега и воды) до небольших (укатанный снег на морозе). Рисунок протектора таких шин имеет четко выраженные «шашки» от продольных и поперечных канавок значительной глубины.

для работы карьерах, лесозаготовках и т. п.

Автомобильные шины устройство и маркировка

Шины могут быть с постоянным или регулируемым давлением. Шины выпускаются в обычном исполнении, тропическом и северном.

Диск для бескамерной шины

Бескамерную резину можно устанавливать только на диски, имеющие «хампы» – специальные выступы на ободе.

Бескамерная резина гораздо более безопаснее на скорости, т.к. она спускает постепенно.

Бескамерная автомобильная шина до того, как начнет спускать держит, как правило, не один, а несколько проколов.

Не стоит без особой необходимости, вставлять в бескамерную шину камеру. Если в камерной шине воздух, попадающий между камерой и шиной, выходит в атмосферу через сосок или негерметичный обод, то в бескамерной шине он остается плоскими пузырями, которые здорово затрудняют теплоотдачу колеса, и оно часто перегревается в жару при больших скоростях, это чревато.

Маркировка шин

Устанавливаемая стандартами различных стран маркировка шин наносится на их боковины и включает следующие обозначения, надписи и знаки:

  • обозначение шины и ее модели;
  • наименование страны – изготовителя на английском языке;
  • обозначение стандарта, которому соответствует шина;
  • индекс скорости;
  • индекс нагрузки (индекс несущей способности (ИНС) или индекс грузоподъемности) – для автомобильных шин или норму слойности – для шин для тракторов и прицепов к ним;
  • товарный знак и (или) наименование предприятия – изготовителя;
  • дату изготовления;
  • порядковый номер шины;
  • надпись «Radial» или буквенный индекс «R» для радиальных шин;
  • знак «Е» в кружочке и число (условный номер европейской страны, выдавшей сертификат), и номер после кружочка – номер сертификата официального утверждения шины на соответствие Правилам № 30 ЕЭК ООН или знак «DOT» (знак соответствия шины американским стандартам безопасности);
  • знак «⇒» направления вращения или надпись «Rotation» – для шин с направленным рисунком протектора;
  • надписи «Tubeless» или «TL» – для бескамерных шин. Для камерных шин могут быть нанесены надписи «Tube Type» или «TT»;
  • надпись «WINTER» – для зимних шин;
  • надпись «Reinforced» (Усиленная) – для шин повышенной грузоподъемности;
  • надпись «Regroovable» – для шин, у которых возможно углубление рисунка протектора методом нарезки;
  • надпись «Retread» – для восстановленных шин;
  • показатели максимальной нагрузки (Max Load) в фунтах (LBS) и килограммах (кг) и соответствующего этой нагрузке внутреннего давления воздуха в шине (Max Press) в фунтах на квадратный дюйм (PSI) и килопаскалях (кПа) для шины в «холодном» состоянии (1 LBS = 0,4536 кгс; 1 PSI = 6,94 кПа). Как правило, эксплуатационная нагрузка и внутреннее давление в шине несколько меньше, чем ее максимальные возможности, то есть шина подбирается на автомобиль как бы с «запасом»;
  • количество слоев и тип корда каркаса и брекера;
  • обозначения «M S» (Mud Snow – грязь снег) или «M S-Е» – для зимних шин без шипов или с шипами;
  • обозначения «AS» (All-Seasons) или «AW» (Any Weather) – для всесезонных или всепогодных шин;
  • обозначение «R W» (Road Winter) – для универсальных шин;
  • надписи «Side Facing Inwards» или «INSIDE» и «Side Facing Outwards» или «OUTSIDE» – для шин с асимметричным рисунком протектора, которые обозначают, соответственно, внутреннюю и наружную стороны шины при её монтаже на обод колеса;
  • надпись «Steel» указывает на использование металлокорда в брекере радиальных шин;
  • надписи «АТ» («All-Terrain») или «МТ» («Mud-Terrain»), которые встречаются на шинах для внедорожных автомобилей. Первые называют вседорожными, вторые – грязевыми. Такие шины имеют более глубокий протектор, они более тяжелые, шумные и менее быстроходные;
  • надпись «Север» – для морозостойких шин;
  • знаки «TWI» (Tread Wear Indication) – места расположения индикаторов износа протектора (для шин, снабженных индикаторами износа). Это выступы, которые размещаются на дне канавок протектора равномерно по окружности шины в 6…8-ми местах. Как только такой выступ появляется на наружной поверхности беговой дорожки шины, протектор считается изношенным, и шина подлежит замене;
  • балансировочную метку.

Обозначения тороидных радиальных и диагональных шин состоят из числовых показателей в дюймах ширины профиля покрышки В и посадочного диаметра обода d. Между числами у радиальных шин ставится буквенный индекс «R», а у диагональных – черточка «-», например: 12.00R20; 12R22,5 или 12.00-20.

Широкопрофильные шины (в том числе, низкопрофильные и сверхнизкопрофильные) имеют обозначение с числовым индексом серии. Это отношение Н/В в процентах, например: 215/70R15С, 200/60R365, 11/70R22,5, где первые числа – ширина профиля в миллиметрах или дюймах, вторые – индекс серии, третьи – посадочный диаметр обода в дюймах или миллиметрах;

буква «С» («Commercial») – указывает на повышенную слойность каркаса шины (шина для легких грузовых автомобилей). Если в обозначении нет буквенного индекса «R», то шина диагональной конструкции, например: 500/70-20 (прежнее обозначение шины 1200х500-508, где числа условно соответствовали наружному диаметру D, ширине профиля B и посадочному диаметру обода d в миллиметрах).

Широкопрофильные шины по стандарту США могут иметь обозначение 31х10,5R15LТ, состоящее из числовых показателей в дюймах: наружного диаметра (31), ширины профиля (10,5) и посадочного диаметра обода (15) и буквенного индекса «LТ» или «Р» (шины для легкого грузового или легкового автомобиля, соответственно)

Буквенный индекс «L» после первого числа в обозначениях шин для тракторов означает, что шина низкопрофильная, например: 6L-12 (Н/В ≈ 0,53).

Шины для легковых автомобилей, в обозначении которых отсутствует числовой индекс серии, имеют Н/В {amp}gt; 0,8 и смешанное обозначение, например: 175R13 или 175-13/6.95-13, где 175 и 6.95 – ширина профиля в миллиметрах и дюймах, соответственно, 13 – посадочный диаметр в дюймах.

Обозначение модели шины состоит из буквенного индекса предприятия – разработчика и порядкового номера разработки, например: КИ-113, где К – Кировский шинный завод, И – НИИШП, 113 – порядковый номер разработки.

Прочность каркаса шин для тракторов (если они не применяются на автомобилях) условно оценивается так называемой нормой слойности (числом PR – «PLY RATING»), величина которой, как правило, 6 PR – для управляемых и направляющих колес, 8 PR и 10 PR – для ведущих колес.

Ранее она аналогично оценивалась и у шин для автомобилей. Шины для легковых автомобилей имели норму слойности 4 PR, для легких грузовых автомобилей и микроавтобусов – 6 PR и 8 PR, для грузовых автомобилей средней и большой грузоподъемности – от 10 PR до 18 PR.

Влияние прочности каркаса на несущую способность шины с регулируемым давлением 390/95R20 показано в качестве примера в таблице 1.

Таблица 1. Влияние прочности каркаса на несущую способность шины 390/95R20 автомобиля Урал-4320

Норма слойности шины,

число PR

Индекс несущей

способности шины

Максимальная нагрузка

на колесо, кгс

10 147 3160
18 156 4000

Норма слойности шины – понятие условное. Её число, как правило, не соответствует ни числу слоев корда в каркасе, ни их числу в каркасе и брекере шины. Так, например, шины Кама-310 (11.00R20) и И-281 (10.00R20) при норме слойности 16 PR имеют в каркасе по 5 слоев нейлонового корда, а в брекере по 5 слоев нейлонового корда плюс 3 и 4 слоя металлокорда, соответственно.

В связи с этим в соответствии с Правилами № 30 ЕЭК ООН указание нормы слойности на шинах для автомобилей заменено указанием индекса нагрузки (индекса грузоподъемности для шин легковых автомобилей и индекса несущей способности для шин грузовых автомобилей). Эти индексы регламентируют максимальную нагрузку на колесо автомобиля и представляют собой числовой код. Например, для шины Кама-204 (135/80R12) индекс грузоподъемности 68 регламентирует максимальную нагрузку на колесо 315 кгс.

Соответствующие индексам нагрузки (ИН) значения максимальных нагрузок на колеса (Gк) приведены в таблице 2.

Таблица 2. Индексы нагрузки

ИН Gк,

кГс

ИН Gк,

кГс

ИН Gк,

кГс

ИН Gк,

кГс

ИН Gк,

кГс

ИН Gк,

кГс

41 145 61 257 81 462 101 825 121 1450 141 2575
42 150 62 265 82 475 102 850 122 1500 142 2650
43 155 63 272 83 487 103 875 123 1550 143 2725
44 160 64 280 84 500 104 900 124 1600 144 2800
45 165 65 290 85 515 105 925 125 1650 145 2900
46 170 66 300 86 530 106 950 126 1700 146 3000
47 175 67 307 87 545 107 975 127 1750 147 3075
48 180 68 315 88 560 108 1000 128 1800 148 3150
49 185 69 325 89 580 109 1030 129 1850 149 3250
50 190 70 335 90 600 110 1060 130 1900 150 3350
51 195 71 345 91 615 111 1090 131 1950 151 3450
52 200 72 355 92 630 112 1120 132 2000 152 3550
53 206 73 365 93 650 113 1150 133 1060 153 3650
54 212 74 375 94 670 114 1180 134 2120 154 3750
55 218 75 387 95 690 115 1215 135 2180 155 3875
56 224 76 400 96 710 116 1250 136 2240 156 4000
57 230 77 412 97 730 117 1285 137 2300 157 4125
58 236 78 425 98 750 118 1320 138 2360 158 4250
59 243 79 437 99 775 119 1360 139 2430 159 4375
60 250 80 450 100 800 120 1400 140 2500 160 4500

Дробный индекс несущей способности шин для грузовых автомобилей (например, 146/143) регламентирует максимальную нагрузку на колесо как при односкатной, так и двускатной ошиновке колес оси (3000/2725 кгс, соответственно).

В обозначениях шин для грузовых автомобилей средней и большой грузоподъемности, у которых для одного размера регламентирована различная норма слойности (см. таблицу 1), указывается число PR. В этом случае полное обозначение шины будет: Кама-Урал 390/95R20 147 J 10PR.

Индекс скорости в обозначениях шин указывается после индекса грузоподъемности, а для шин легковых автомобилей скоростных категорий от S и выше может также указываться перед буквенным индексом «R» (например, 215/60VR15). Соответствующие индексам скорости значения максимальных скоростей движения (Vmax), определяемые конструкцией шин, приведены в таблице 3.

Обозначения камер идентичны обозначениям шин. Камеры тороидных шин имеют обозначение в дюймах, например, 12.00-20, где числа условно соответствуют ширине профиля покрышки и посадочному диаметру обода колеса. Камеры широкопрофильных шин имеют обозначение в миллиметрах, например, 1200х500-508, где числа условно соответствуют наружному диаметру и ширине профиля покрышки и посадочному диаметру обода колеса.

Таблица 3. Индексы скорости шин

Индекс скорости А1 А2 А3 А4 А5 А6 А7 А8 B C
Vmax, км/ч 5 10 15 20 25 30 35 40 50 60
Индекс скорости D E F G J K L M N P
Vmax, км/ч 65 70 80 90 100 110 120 130 140 150
Индекс скорости Q R S T U H V W Y Z
Vmax, км/ч 160 170 180 190 200 210 240 270 300 {amp}gt;240

Обозначения ободных лент состоят из двух чисел в дюймах (7.7-20) или миллиметрах (340-533): первое – ширина ленты, второе – посадочный диаметр обода колеса.

Маркировка шин

Пример: 185/65 R15 87Т – размер шины и ее техническая характеристика:

  • 185 – ширина профиля шины в мм.;
  • 65 – отношение высоты профиля к ее ширине, выраженное в процентах;
  • R – радиальная конструкция шины;
  • 15 – посадочный диаметр обода в дюймах;
  • 87 – индекс грузоподъемности. Ряд зарубежных фирм указывают максимальную нагрузку (MAX LOAD) в кг и английских фунтах;
  • Т – индекс максимальной скорости, на которую рассчитана шина;
  • надпись “Radial” – указывает на радиальную конструкцию шины;
  • “Tubeless” – маркировка бескамерной шины. Камерная шина обозначается “TUBE TYPE”;
  • “M S” (Mud Snow -грязь снег) – тип рисунка протектора. Маркировка обозначает, что шина предназначена для эксплуатации в зимний период года и по грязи;
  • цифры 379 – дата выпуска шины: изготовлена на 37-й неделе 2009 года;
  • знак Е одним цифровым индексом (на других шинах может быть двухцифровой индекс) указывает, что шина проверена на соответствие европейскому стандарту безопасности. Индекс в кружке – условный номер страны, где назначенная правительством комиссия провела проверку. Например, Е – проверено в Швеции. Пятизначный (может быть и шестизначный) индекс, нанесенный рядом с кружком, означает номер сертификата, свидетельствующий о положительных результатах проверки, и выданного страной, осуществлявшей проверку.
Индекс
грузоподъемности,
кг/колесо
Индекс
максимальной
скорости, км/ч
60 – 250
62 – 265
64 – 280
66 – 300
68 – 315
70 – 335
72 – 355
74 – 375
76 – 400
78 – 425
80 – 450
82 – 475
84 – 500
86 – 530
88 – 560
90 – 600
F – 80
G – 90
J – 100
K – 110
L – 120
M – 130
N – 140
P – 150
Q – 160
R – 170
S – 180
T – 190
H – 210
V – 240
VR – 210-240
ZR – от 240
Маркировка шин в ЕС

 Маркировка автомобильных шин.

Все основные типы современных шин для автомобилей и тракторов практически имеют сходную структуру конструкции.

Рисунок 5. Элементы конструкции шины: 1 – каркас; 2 – брекер; 3 – протектор; 4 – боковина; 5 – бортовая лента; 6 – пятка борта; 7 – основание борта; 8 – носок борта; 9 – борт; 10 – бортовые кольца; 11 – усилительные ленты; а – ширина борта; б – корона; в – плечевая зона; г – зона боковины; д – зона усиления;

Каркас 1 – силовой элемент шины, воспринимающий действующие на нее нагрузки. Он состоит из нескольких слоев прорезиненного корда (минимум: из двух у диагональных шин, из одного (монослоя) – у радиальных шин), закрепленных на бортовых кольцах 10. С увеличением числа слоев корда повышается прочность каркаса и увеличивается грузоподъемность шины, но возрастают ее масса и сопротивление качению.

Резина предохраняет кордные нити от влаги, перетирания и способствует равномерному распределению нагрузок между ними. Концы слоев корда вместе с бортовыми кольцами 10 образуют борта 9, служащие для плотной посадки покрышки на ободе колеса. У бескамерной шины борта, кроме того, обеспечивают герметичность её посадки на ободе колеса.

По форме профиля шины делятся

Брекер 2 – резинокордный слой, расположенный между каркасом и протектором шины. Он служит для усиления каркаса и снижения (смягчения) ударных нагрузок, действующих на колесо (каркас шины) со стороны опорной поверхности, а также более равномерного распределения их по поверхности шины. Брекер, как правило, имеет более высокую температуру по сравнению с другими элементами шины, иногда достигающую 1200С. От конструкции брекера в значительной степени зависит форма пятна контакта шины с дорогой.

Протектор 3 – наружная часть шины, непосредственно контактирующая с опорной поверхностью. Протектор обеспечивает необходимый эксплуатационный ресурс работы шины, надлежащее сцепление шины с опорной поверхностью, сглаживание ударных нагрузок со стороны опорной поверхности, снижение крутильных колебаний в трансмиссии колесной машины, а также предохраняет (совместно с резиновым слоем плечевой зоны (в) и зоны (г) боковины) каркас шины от повреждений.

Протектор состоит из рельефного рисунка, разновидность которого зависит от типа и назначения шины, и подканавочного слоя, который обычно составляет 20…30 % от толщины протектора. Практически все важнейшие эксплуатационные свойства колесной машины зависят от рисунка протектора.

Элементами рельефного рисунка протектора являются беговые дорожки, грунтозацепы (блоки), продольные и поперечные (радиальные) канавки различной формы, длины и ширины и очень тонкие щелевидные прорези дорожек протектора и грунтозацепов – ламели.

Дорожки протектора – это непрерывные резиновые кольца (пояса), через которые шина взаимодействует с опорной поверхностью, или совокупность грунтозацепов, которые своим последовательным расположением по окружности шины образуют прерывистые кольца.

Грунтозацепы могут быть любой формы от простой (шашки, ëлочка) до многогранников сложной формы. Их края могут иметь острые ступенчатые кромки для обеспечения высокой проходимости или скругленные формы для улучшения характеристик качения шины.

Поперечные канавки предназначены для отвода загрязнений от центра к краям пятна контакта шины с опорной поверхностью. Чем канавки шире, тем лучше самоочищаемость протектора шины, но хуже характеристики ее качения. Кромки поперечных канавок улучшают сцепные свойства шин.

Продольные канавки собирают загрязнения от поперечных, повышают стойкость шины к аквапланированию на мокрой дороге. Их края повышают сопротивляемость шины боковому заносу, что улучшает управляемость автомобиля. Но чем больше продольных канавок, особенно прямолинейной формы, тем хуже сцепные свойства шины. Зигзагообразные канавки улучшают сцепные свойства шины, но ухудшают отвод воды и снежной взвеси.

Для зимних шин целесообразно сужение всех канавок вглубину, что улучшает самоочищаемость протектора шины от смеси воды, снега и грязи («шуги»).

Зигзагообразные ламели (рисунок 6) за счет «кромочного» эффекта улучшают сцепные свойства шины с дорогой в поворотах, при торможении и на участках дороги покрытых водой и укатанным снегом. Компания «Michelin» – создатель ламелей – разработала каплеобразную ламель, позволяющую сохранять сцепные свойства шины при частичном износе протектора.

Рисунок 6. Поверхность центральной беговой дорожки, шашек и блоков зимней шины насыщена большим количеством ламелей

Протектор имеет не одинаковую толщину у шин различных конструкций и назначения. Чем больше толщина протектора, тем больше срок службы (ресурс) шины, тем лучше он защищает каркас от повреждений. Однако, тем больше масса шины, склонность ее к перегреву и расслоению, выше момент инерции и коэффициент сопротивления качению колеса.

Боковины 4 – слои резины, являющиеся продолжением протектора, покрывающие стенки каркаса и выполняющие защитные функции. Боковины должны быть достаточно эластичными и, следовательно, достаточно тонкими, чтобы длительное время выдерживать многократные изгибающие силы. Боковины изготавливают как одно целое с протектором и из протекторных резиновых смесей.

Борта 9 – жесткие части шины, служащие для крепления ее на ободе колеса. Борта состоят из бортовых колец 10, выполненных из стальной проволоки, твердого резинового жгута, прорезиненной обертки бортовых колец и усилительных лент 11. Бортовые кольца необходимы для придания бортам требуемой прочности, а резиновый жгут способствует их монолитности.

Маркировка автомобильных шин

Диагональные и радиальные шины различаются построением каркаса, а именно, расположением нитей слоев корда в каркасе.

У диагональных шин нити в смежных слоях корда и брекера располагаются перекрестно под углом наклона 35…380 к экватору покрышки (рисунок 7, а). Каркас является несущим элементом шины, и поэтому воспринимает все силы (радиальные, боковые и продольные) и моменты, действующие на колесо. Чем меньше угол наклона нитей в смежных слоях корда (30…340 для спортивных шин), тем лучше передаются боковые силы, действующие на колесо.

Основным недостатком диагональных шин является то, что в процессе их контакта с опорной поверхностью изменяются направления перекрестных слоев, в результате чего в каркасе происходит повышенное выделение теплоты, а в плоскости контакта – относительное смещение слоев корда, приводящие к высоким гистерезисным потерям и износу протектора.

У радиальных шин нити в слоях корда не пересекаются. Они располагаются по радиусу покрышки под углом наклона 85…900 к экватору (рисунок 7, б), что делает каркас весьма эластичным и, как следствие, излишне податливым под действием боковых и продольных сил. При таком расположении нити каркаса способны воспринимать только вертикальные нагрузки, что значительно снижает возникающие в них напряжения и позволяет при одной и той же вертикальной нагрузке с диагональной шиной уменьшить число слоев корда в каркасе и, следовательно, толщину каркаса.

Например, радиальные шины с металлокордом в каркасе и брекере для грузовых автомобилей большой грузоподъемности имеют всего 2…4 слоя корда в каркасе вместо 8…14. Вследствие этого у радиальных шин меньше нагрев, ниже потери при качении, больше толщина протектора, что увеличивает срок их службы (ресурс) в 1,5…2,0 раза.

Продольные и боковые силы, действующие на колесо, воспринимаются в радиальной шине наложенным на каркас практически нерастяжимым брекерным поясом, имеющим диагональную конструкцию нитей корда (рисунок 7, в). Для брекерного пояса используется металлокорд или его сочетание с нейлоновым или вискозным кордом.

Это связано с тем, что металлокорд, обладая высокой прочностью, теплопроводностью и теплостойкостью, способствует уменьшению напряжений и более равномерному распределению температуры в теле покрышки. Брекерный пояс амортизирует ударные нагрузки, возникающие при качении колеса по неровной дороге, распределяет их по каркасу, защищает последний от механических повреждений.

Кроме того, жесткий брекерный пояс не позволяет протектору радиальной шины ощутимо деформироваться при воздействии боковых и продольных сил, поэтому пятно контакта шины с дорогой остается практически неизменным. Это заметно повышает курсовую устойчивость колесной машины при высоких скоростях движения, улучшает её маневренность, а значит и безопасность движения.

Расшифровка наиболее часто применяющихся коэффициентов

а)                                                                  б)                                                        в)

Рисунок 7. Диагональная и радиальная шины: а – диагональная шина; б – радиальная шина; в – брекерный пояс

В то же время радиальное расположение нитей корда снижает прочность боковин шины. В тяжелых дорожных условиях вероятность повреждения боковин довольно велика и, как следствие, долговечность радиальных шин, эксплуатирующихся преимущественно на бездорожье, часто оказывается ниже, чем диагональных. Это свойство радиальных шин, наряду с более высокой их стоимостью, является основной причиной продолжающегося производства диагональных шин.

Среди других недостатков радиальных шин можно отметить:

  • повышенный шум у шин с металлокордом при высоких скоростях движения.
  • больший момент инерции относительно оси вращения, что связано с расположением на периферии большей части массы шины: достаточно тяжелого брекерного пояса и протектора;
  • пониженную боковую жесткость, что ухудшает устойчивость колесной машины (у современных машин этот недостаток нивелируется за счет характеристик подвесок);

5. Системы регулирования давления воздуха в шинах

Система регулирования давления воздуха в шинах предназначена:

  • для повышения опорной проходимости автомобиля в тяжелых дорожных условиях и при движении по бездорожью за счет снижения давления воздуха в шинах. При снижении давления воздуха в шинах увеличивается площадь пятна их контакта с опорной поверхностью, что приводит к снижению удельной нагрузки на опорную поверхность и повышению силы тяги на ведущих колесах;
  • для сохранения подвижности автомобиля в случае прокола (проколов) шины за счет постоянной ее подкачки во время движения и поддержания давления воздуха в шине в требуемых пределах. Условием сохранения подвижности автомобиля является достаточная для восполнения утечки воздуха из поврежденной шины производительность компрессора и диаметр проходного сечения вентиля;
  • для постоянного контроля давления воздуха в шинах и поддержания его в заданных пределах во время движения.

Система регулирования давления воздуха в шинах автомобилей с пневматическим или пневмогидравлическим приводом тормозов включается в общую систему пневмооборудования автомобиля параллельно от тройного защитного клапана пневмосистемы тормозов через клапан-ограничитель понижения давления воздуха в пневмосистеме.

индекс максимально допустимой скорости, при которой производитель гарантирует сохранение заложенных эксплуатационных характеристик шины

Управление системой осуществляется из кабины водителя рычагом, воздействующим на кран управления давлением воздуха в шинах (рисунок 15), что позволяет производить постоянный контроль давления воздуха в шинах по манометру 38 и поддержание его в заданных пределах во время движения.

Рисунок 15. Работа крана управления давлением воздуха в шинах при накачке шин и выпуске воздуха в атмосферу

Кран управления – золотникового типа. Золотник 6 перемещается в корпусе 8 и уплотняется сальниками. Находящееся на золотнике замочное кольцо 23 ограничивает крайние пределы хода золотника. Когда давление воздуха в пневмосистеме выше ограничиваемого клапаном-ограничителем 11, диафрагма 10 открывает доступ воздуха из воздушного баллона 35 в корпус 8 через седло 19.

Для накачивания шин золотник 6 рычагом управления перемещается внутрь корпуса 8 и через его проточку и трубки (штуцер 9) воздух поступает в шины и к манометру. Для понижения давления воздуха в шинах рычаг управления перемещается в положение «Выпуск». Утолщенная концевая часть золотника 6 плотно входит в сальник 21 крана, подача воздуха из воздушного баллона 35 прекращается, и воздух из шин через трубку (штуцер 14) выходит в атмосферу.

Головки подвода воздуха (рисунок 16), установленные на полуосях ведущих мостов, состоят из корпуса 1 и двух резиновых манжет 3 (с пружинами 2), поджимаемых крышками с пружинными запорными кольцами 4, обеспечивающими герметичность подвижного соединения «головка – полуось». Воздух к головкам поступает через штуцеры, а из их полостей по каналам в полуосях – к кранам запора воздуха и далее по соединительным шлангам к шинам.

Рисунок 16. Головка подвода воздуха

Дата изготовления шины

Краны запора воздуха (рисунок 17) установлены на каждом колесе. Они предназначены для отключения шин от системы (рисунок 17, б) при длительной стоянке автомобиля и в случае выхода из строя манжет головок подвода воздуха. Кран состоит из корпуса 2, в котором по резьбе перемещается пробка 1. Пробка уплотнена резиновым кольцом 4, которое поджимается гайкой 3 через резиновые шайбы. Уплотнение корпуса крана в гнезде полуоси обеспечивается резиновым кольцом 5.

а)                                                                                                         б)

Рисунок 17. Кран запора воздуха: а – открыт; б – закрыт

У автомобилей с гидравлическим приводом тормозов система регулирования давления воздуха в шинах выполняется автономной. Основные элементы и особенности работы системы аналогичны автомобилю с пневматическим приводом тормозов.

6. Разработка безопасных и боестойких шин

Важнейшим шагом в направлении повышения боестойкости было создание в конце 50-х годов ХХ века бескамерных шин. Механические повреждения шин (в том числе, сквозные) уже не вызывали резкого падения давления воздуха. После повреждения бескамерные шины имеют небольшой пробег вследствие падения давления в случае отсутствия подкачки воздуха, но больший, чем у шин с камерами.

На колесных машинах с системой регулирования давления воздуха в шинах использование бескамерных шин несколько повышает стойкость шин к повреждениям. Однако эта система может компенсировать утечку воздуха и поддерживать давление воздуха в шинах только до определенного предела в зависимости от количества и характера сквозных повреждений шины (при отсутствии пробоя обода).

Наряду с этим бескамерные шины не могут работать при отсутствии избыточного давления воздуха и при сквозном одновременном повреждении шины и обода. Одного сквозного повреждения обода бывает достаточно, чтобы вывести колесо из строя, ибо система регулирования давления воздуха в шинах не обеспечивает в этом случае поддержания даже минимально-допустимого рабочего давления в шине.

Существенное снижение скорости истечения воздуха при пулевых поражениях шины и обода может быть достигнуто за счет применения распорно-герметизирующих резинокордных колец и изменения отдельных элементов конструкции шины (рисунки 18 и 19).

Рисунок 18. Распорно-герметизирующее кольцо: 1 – внутренняя резиновая часть кольца; 2 – вентиль; 3 – металлокорд; 4 – резиновое защитное покрытие

Распорно-герметизирующее кольцо устанавливается между бортами бескамерной шины и вместе с ней одевается на внутреннюю часть обода. Для удобства монтажа и демонтажа шины с распорным кольцом внутренний диаметр кольца выбран с таким расчетом, чтобы обеспечить зазор 1…2 мм между ободом колеса и внутренней поверхностью кольца в свободном состоянии.

Благодаря тому, что резина кольца находится в сжатом состоянии, при его сквозных повреждениях образовавшиеся отверстия зажимаются за счет напряжений в резине, чем обеспечивается достаточная герметичность внутренней полости шины.

Создание распорного усилия, обеспечивающего сжатие резины распорно- герметизирующего кольца и удержание бортов шины на полках обода при изменении внутреннего давления воздуха, достигается армированием кольца по всей наружной поверхности металлокордом в окружном направлении.

При сквозном простреле резинокордной оболочки шины время истечения воздуха через полученное отверстие в десятки раз меньше, чем время истечения воздуха при простреле обода, что объясняется, в первую очередь, эластичными свойствами самой оболочки.

Рисунок 19. Распорно-герметизирующее кольцо в рабочем состоянии: 1 – внутренняя резиновая часть кольца; 2 – вентиль; 3 – металлокорд; 4 – резиновое защитное покрытие; 5 – борта шины; 6 – внутренняя часть обода; 7 – наружная часть обода; 8 – стяжной болт

Применение распорно-герметизирующих колец обеспечивает посадку бортов шины на полки ободьев и ее герметизацию при сборке колес и позволяет эксплуатировать бескамерные шины с регулируемым давлением на негерметичных ободьях серийного производства, применяемых для шин с камерами.

Необходимо также отметить, что при пулевом простреле такого кольца падение давления воздуха в полости шины аналогично его падению при простреле самой шины. В этом случае время падения давления воздуха в шине будет соответствовать времени, показанному на рисунке 1.20 при простреле шины.

Как отмечалось ранее, применяемые в настоящее время бескамерные пневматические шины имеют один существенный недостаток – они не могут работать при отсутствии избыточного давления воздуха (при атмосферном или «нулевом» давлении), даже кратковременно.

Рисунок 20. Эффективность бескамерной шины по пулестойкости

С целью устранения этого недостатка работы в области создания безопасных и боестойких шин ведутся, главным образом, по четырем наиболее перспективным направлениям:

  • разработка шин, имеющих специальную конструкцию боковин;
  • разработка шин, заполненных упругим веществом;
  • введение в шину внутреннего ограничителя деформации в виде вставок (резинометаллических, резиновых, металлических, пластмассовых, разъемных и сплошных и др.);
  • разработка боестойких шин, постоянно работающих при «нулевом» давлении воздуха. Одной из первых разработок шин, работоспособных при «нулевом» давлении, были шины с усиленным каркасом и развитыми бортовыми зонами. Каркас имел переменную толщину по профилю покрышки: в коронной зоне – 8 слоев; в зонах боковин – 26 слоев, а в бортовых зонах – 38 слоев корда.

Шины имели ограниченный пробег при «нулевом» давлении, который на бронетранспортере ГАЗ-41 составил всего 150…300 км при скорости движения до 40 км/ч. В процессе испытаний были выявлены серьезные недостатки, связанные с конструкцией каркаса:

  • повышенный нагрев при работе с номинальным давлением воздуха;
  • повышенную радиальную жесткость и, как следствие, низкую эффективность применения регулирования давления воздуха в шинах и ухудшение проходимости бронетранспортера по деформируемым грунтам.

Указанные недостатки не позволили использовать шины даже в обычных условиях эксплуатации.

По этому направлению продолжаются работы, связанные с изменением конструкции боковин и созданием безопасных (самонесущих) шин. Безопасные шины при их повреждениях должны обеспечивать колесной машине возможность достаточно длительного движения, поэтому требуют специальной конструкции боковин. Примером таких безопасных шин являются шины фирм «Pirelli», «Bridgestone» и «Continental», выполненные по технологии «RF» («Run Flat», то есть «движение на спущенной шине»). Схемы конструкции и изменения состояния таких шин при потере давления воздуха приведены на рисунках 21 и 22.

Рисунок 21. Безопасная (самонесущая) шина «RFT»: 1 – шина; 2 – внутреннее усиление боковины; 3 – шина без внутреннего давления воздуха

Благодаря усиленным боковинам и использованию резиновой смеси устойчивой к высоким температурам и деформациям шины «RFT» При потере внутреннего давления воздуха удерживают нагрузку, действующую на колесо автомобиля. За счет этого они обеспечивают возможность движения на расстояние 80…150 км с максимальной скоростью до 80 км/ч в зависимости от дорожных условий и нагрузки на колесо.

В настоящее время большинством ведущих производителей шин освоены технологии производства самонесущих шин, внешне неотличимых от обычных, которые поставляются для первичной комплектации автомобилей. Их установка обусловливает обязательный контроль давления воздуха, так как водитель может не заметить прокола шины.

Рисунок 22. Самонесущая и обычная шины при номинальном и нулевом давлении воздуха

Боковины повышенной жесткости имеют и отечественные шины с регулируемым давлением воздуха модели КИ-133. При движении колесной машины по деформируемым грунтам давление воздуха в шинах снижается до определенной величины и нагрузку на колесо несет каркас шины при увеличенном прогибе.

Самонесущие шины имеют следующие преимущества:

  • значительно повышается уровень безопасности в случае повреждения шины;
  • не требуется замена колеса на месте прокола;
  • снижается масса автомобиля и увеличивается объем багажного отделения в связи с отсутствием запасного колеса, домкрата и баллонного ключа.

К недостаткам самонесущих шин относятся:

  • повышение стоимости шины на 15…25 %;
  • увеличение массы шины и сопротивления качению;
  • повышение нагрузки на подвеску автомобиля и ободья колес;
  • необходимость установки системы, обеспечивающей контроль давления воздуха в шинах;
  • некоторое снижение комфортности езды за счет повышения жесткости колес.

Попытки использования шин с губчатой камерой в качестве боестойких завершились безрезультатно. Эти шины состоят из покрышки и губчатой камеры (взамен пневматической). Губчатая камера представляет собой сплошной резиновый массив с газонаполненными ячейками, которые образуются в результате вулканизации шины (покрышки, наполненной сырой резиновой смесью и смонтированной на ободе).

Данная конструкция по сравнению с обычной пневматической шиной имеет:

  • более высокую стойкость к механическим повреждениям;
  • достаточно высокую работоспособность при пулевых и осколочных повреждениях;
  • высокую эксплуатационную надежность и простоту обслуживания.

Однако шинам с губчатой камерой также оказались присущи серьезные недостатки, исключающие их применение: большая масса, высокое сопротивление качению и сильный нагрев при движении с высокими скоростями. Кроме того, имеют место трудности при изготовлении шин в части заполнения их смесью.

Перспективность работ в этом направлении, видимо, связана с созданием боестойких шин с регулируемым давлением воздуха, частично заполненных упругим веществом, изменяющим свои габариты в зависимости от величины внутреннего давления воздуха в шине.

Другим направлением в разработке боестойких шин явилось создание колеса с вращающейся жесткой опорой как одного из вариантов конструкции, обеспечивающей возможность работы шины при «нулевом» давлении воздуха.

Колесо с вращающейся жесткой опорой состояло из бескамерной шины 6 и трех одинаковых секторов опоры 4, вставленных по отдельности внутрь шины и скрепленных между собой болтами (рисунок 23).

Герметизация обода осуществлялась кольцевым резиновым шнуром 1, расположенным во впадине между частями обода 2 и 8 и прижимаемым к ободу разъемным металлическим распорным кольцом 7. Распорное кольцо удерживало борта шины на полках обода при падении давления воздуха в шине.

7. Выбор шин

Выбор шин для колесных машин производится на стадии проектирования. Основой для выбора шин являются назначение, условия эксплуатации, технические характеристики и требования, заложенные в техническом задании на разработку колесной машины, а также особенности ее компоновки и конструкции.

Основными исходными показателями при выборе шин являются:

  • максимальная радиальная нагрузка на колесо (с учетом перегрузки, если она допускается);
  • основные размеры шины (наружный диаметр, ширина профиля, отношение Н/В) с учетом компоновочных проработок;
  • максимальная скорость движения колесной машины;
  • гарантийная наработка шин;
  • минимально-допустимое давление воздуха в шинах (для шин с регулируемым давлением и шин для тракторов при выполнении ими сельскохозяйственных работ).

Максимальная радиальная нагрузка на колесо определяется исходя из полной массы колесной машины, числа осей и колес на каждой оси (для ВАТ – только односкатная ошиновка) и распределения нагрузки по осям (для ВАТ принимается равномерное распределение).

Выбор шин для ВАТ и тракторов производится по расчетной нагрузке на колесо. При этом расчетная нагрузка на ось ВАТ принимается на 10 % выше максимальной с учетом допускаемой перегрузки каждой оси.

При выборе шин для тракторов расчетная нагрузка на колесо определяется с учетом его догрузки за счет навесных сельскохозяйственных машин и технологических орудий, поэтому для передних колес тракторов с колесной схемой 4К4 и задних колес тракторов 4К2 и 4К4 принимается коэффициент запаса грузоподъемности равный 1,3.

Необходимо учитывать, что шины большего диаметра обеспечивают лучшие тягово-сцепные свойства, однако, повышают нагрузки в трансмиссии колесной машины и ухудшают показатели устойчивости и управляемости вследствие повышения центра масс и уменьшения угла поворота управляемых колес.

Сортамент шин, их грузоподъемность, величины внутреннего давления воздуха, максимальная скорость, основные размеры, типы рисунков протектора, рекомендуемые типы и размеры ободьев и нормы эксплуатационных режимов стандартизованы.

Выбранные шины для автомобилей должны удовлетворять требованиям по грузоподъемности (с учетом перегрузки, если она допускается, и соответствующего (номинального) давления воздуха), критической скорости, температуре нагрева и упругим характеристикам.

Критическая скорость должна быть в 1,5…2,0 раза выше максимальной. Превышение критической скорости способствует возникновению на беговой дорожке протектора непрерывных тангенциальных колебаний со значительной амплитудой. В результате, вход участков шины в контакт с дорожным покрытием сопровождается ударами, что приводит к критическому возрастанию температуры и быстрому разрушению шины.

Допускаемая температура нагрева всех типов шин определяется свойствами резины и не должна превышать 1200С, чтобы не происходили расслоения элементов шины, разрывы каркаса и разрушения брекерного пояса и протектора.

Фото обозначений на шинах

Для тракторов по величине расчетной нагрузки на колесо и выбранной (или заданной) величине давления воздуха в шине подбор осуществляется по ГОСТ 7463.

Методика выбора шин для перспективных образцов ВАТ предусматривает три этапа:

  • предварительный – по приведенной удельной нагруженности шин по объему, являющейся качественным показателем уровня опорной проходимости колесной машины;
  • расчетный – по результатам расчета показателей опорной проходимости колесной машины путем математического моделирования ее движения по деформируемым грунтам;
  • экспериментальный – оценка выбора шин по ключевым показателям движения колесной машины по дорогам с твердым покрытием и по деформируемым грунтам. Уровень соответствия нагрузочных и размерных показателей шин возможностям уверенного движения ВАТ по представительным деформируемым грунтам достаточно объективно характеризуется приведенной удельной нагруженностью шин по объему. Поэтому на предварительном этапе выбираются радиальные шины с удельной нагруженностью не более 8,0 т/м3 и диагональные – не более 7,0 т/м3.

Расчетный этап заключается в определении показателей опорной проходимости колесной машины с различными типоразмерами шин и изменением давления воздуха в них с помощью математической модели.

Экспериментальная оценка выбора шин по ключевым показателям движения колесной машины по дорогам с твердым покрытием и по деформируемым грунтам является наиболее достоверной при окончательном выборе шин для ВАТ. При этом выявляются шины, обладающие наиболее предпочтительными показателями по сопротивлению качения, тепловой нагруженности (с определением ее критических значений), и заметности по ИК- излучению, а также обеспечивающие колесной машине наилучшие показатели проходимости по деформируемым опорным поверхностям.

Конструктивное исполнение и размеры колес и ободьев выбирают в зависимости от основных размеров шин (наружного диаметра, ширины профиля и отношения Н/В), размеров тормозных дисков (или барабанов), наличия колесных (или бортовых) редукторов ведущих мостов и с учетом создания необходимых условий для охлаждения и вентиляции тормозных механизмов.


Adblock detector